ANGIOPLASTY SUMMIT-TCTAP 2010

New TAVI Devices: More of the Same or Meaningful Differences?

Eberhard Grube MD

Intl. Heart Center Rhein – Ruhr, Essen, Germany Hospital Oswaldo Cruz - Dante Pazzanese, São Paulo, Brazil Stanford University, Palo Alto, California, USA

Disclosure Statement of Financial Interest

Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Physician Name

Eberhard Grube, MD

Company/Relationship

Medtronic, CoreValve: C, SB, AB, OF Sadra Medical: E, C, SB, AB Direct Flow: C, SB, AB Mitralign: AB, SB, E Boston Scientific: C, SB, AB Biosensors: E, SB, C, AB Cordis: AB Abbott Vascular: AB Capella: SB, C, AB Devax: SB, AB,

Key

G - Grant and or Research SupportE - Equity Interests S - Salary, AB - Advisory BoardC - Consulting fees, HonorariaR - Royalty IncomeI - Intellectual Property RightsSB - Speaker's BureauO - OwnershipOF - Other Financial Benefits'

Transcatheter AVR

Current Generation Devices

Edwards ~5,500 patients

CoreValve ~5,500 patients

Success, but Opportunity for Improvement

- Percutaneous Aortic Valve Replacement (PAVR) has established itself as a viable therapy
 - Solid clinical results
 - Expanding number of MD's performing PAVR

Challenges remain with current devices

- Steep, unforgiving learning curves
- Difficult to place with precision
- Cannot be easily repositioned for optimization
- Cannot be atraumatically removed if needed
- Perivalvular Leaks
- Permanent Pacemaker Implant
- Stroke

Positioning is Critical

Edwards – Positioning Challenges

Migration of valve during deployment due to escape beats

AV-Block III° Following COREVALVE Implantation

Annulus and LVOT Calcification Grades Correlate With AR - ,Siegburg Score'

Para-Valvular Regurgitation

POOLED* Monitored Edwards TAVI *Echo AR Results*

CoreValve Siegburg Experience Aortic Regurgitation

Future Aortic Valve Concepts

- Direct Flow
- Sadra
- -AorTx
- Jena Valve
- HLT
- ABPS PercValve
- EndoTech
- Ventor Embracer

(?) less peri-valvular AR

Sadra Medical Lotus Valve System

Designed for optimized aortic valve replacement with a user-friendly delivery system

- Highly accurate, controlled prosthesis positioning
 - Self-centering
- Easy repositioning, distally or proximally Pericardium
- Retrievability
- Minimal Perivalvular Leakage

Adaptive[™] Seal -

Lotus Valve – Accurate Positioning

- Control in the MD's hands
 - Rate of deployment
 - Ability to pause, unsheath, re-sheath, lock, unlock
 - Fully repositionable, distally and proximally
- Accurate positioning facilitated by
 - Self-centering
 - Predictable locking around central marker

Clinical Experience to Date

- Clinical experience
 - 10 patients enrolled July 2007 October 2008
 - 6 patients implanted, 5 surviving
- Intra-procedural results
 - Procedure time <20 minutes
 - No perivalvular leaks
 - No migration issues
- Follow-up at 1 year to be presented
- European Trial with new Device started in April 2010

Clinical Data Summary – Enrollment/Demographics

-	Number of Patients Enrolled Gender	10 80% Female
	Age	84.2 ± 5.9 years
	EuroScore (n=8) STS Score (n=8)	17.3%±7.8% (9.7 - 28.9%) 9.6%±6.0% (2.3 - 22.1%)
	Common Pre-existing Conditions	COPD, Hypertension, hyperlipidemia, CHF, PVD, mitral valve disease
	Pre-op Annulus Diameter (per CT) (n=10)	$21.4 \pm 1.2 \text{ mm} (20.1 - 23.7)$
	Pre-op Mean Gradient (n=10)	55.7±15.6 mmHg (32 – 80)
14.43	Pre-op AVA	$0.58 \pm 0.08 \text{ cm}^2 (0.4 - 0.85)$

Long Term Follow-up – Valve Area

Lessons from First Clinical Experience

- Lotus Valve Implant function is excellent, but opportunities identified to improve delivery system:
 - Valve attachment to and release from delivery system needed to be simplified.
 - Handle needed to be redesigned with ease of use a foremost consideration
 - Delivery System size limited use needed to be reduced.

Simplified Attachment: 15 → 3 fingers

Previous 15 finger design

New 3 finger design

Redesigned Handle: 7 \rightarrow 2 controls

10 0

- Fewer controls easier to use
- Ensures correct deployment sequence

Siegburg

Reduced force required to lock

Profile Reduction: 21 → 18 Fr

- Sadra-developed thin-wall introducer enables fully percutaneous procedure:
 - Same outer diameter as Cook 18Fr
 - Reinforced for excellent kink resistance

Cook 18Fr Introducer Sheath

Latest Patient Implant – April 13, 2010

Timeline

- Multicenter European Trial started 13.April 2010 (PI. E.Grube)
 - Intl. Heart Center Rhein Ruhr (E.Grube)
 - University Hospital Essen (R.Erbel)
 - Heart Center Siegburg (R.Mueller)
- First 3 Patients enrolled with excellent acute hemodynamic and angiographic results
 - Zero Gradient
 - No Aortic Insufficiency
 - No Pacemaker Implant
 - Av. Implant Time 14 Minutes

The Direct Flow Medical (DFM) Aortic Valve Prosthesis

Tri-leaflet Valve constructed of <u>Bovine Pericardium</u>

<u>Multilumen</u>

Ventricular and Aortic Rings -Inflate independently so device can be <u>repositioned</u> -deflatable so that device can be fully <u>retrieved</u>

> Slightly Tapered, Conformable Polyester Fabric Cuff Positie

Position Fill Lumens (PFLs) -Used to position/reposition valve -Complete Inflation Media Exchange

18F System Features

3 sizes matching valvuloplasty balloons

18F Design

European Feasibility Trial

Design: Prospective, non-randomized clinical evaluation of the DFM PAV at two centers in Germany Hamburg University Cardiovascular Center (n=25) Siegburg, Helios Heart Center (n=6)

Purpose: Determine clinical feasibility and safety of treating patients high-risk for cardiac surgery:

- EuroSCORE ≥ 20%
 - Age ≥ 70
 - Severe aortic valve stenosis

The DFM AV Prosthesis European Clinical Trial

Mean Gradient (mmHg)

Transcatheter AVR

Summary Thoughts...

- Next generation TAVR *devices* are rapidly evolving, providing substantial benefits over the first generation devices
- Issues addressed are repositionability, risk of paravalvular leakage, profile size etc.
 - Valve + platform <u>*durability*</u> still must be conclusively demonstrated!
 - Once durability is established, we can expand clinical trials and indications for TAVR to most (not all) patients with severe AS!

Aortic Atheroma: High Risk

- 268 of 3404 CABG patients (8%) had
- atheroma (>/= 5 mm, or mobile)
- Defined by epi-aortic ultrasound¹
 15.3% of group had intra-operative stroke¹

•¹Protruding aortic arch atheromas: risk of stroke during heart surgery with and without aortic arch endarterectomy. Stern et al. American Heart Journal Oct. 1999.

• High Risk for:

Intra-operative stroke Multiple morbidity Prolonged hospital stay, Death resulting from heart surgery.¹

Risk Factors for Aortic Atheroma:

- > 70 years old
- Diabetes Mellitus
- Hyperlipidemia
- Arterial hypertension
- Aortic calcifications on chest X-ray
- Elevated serum levels of C-reactive protein

- Other inflammatory markers
- Activated coagulation³

Embolic Material

Embolic Material

Claret Dual Filter

7 mm filter placed in left carotid

Embrella Embolic Deflector™

- Porous membrane designed to deflect embolic debris
- Nitinol
 Frame & Shaft
- •Polyurethane Porous Membrane
- Heparin Coating
- 3 Radiopaque Markers
- Suture; Monofilament Nylon

Left Common Carotid Artery

Brachiocephalic Artery

Embrella span width

Embrella Case Example

Thank you for your attention !

Thank you

It is important to remember that pacemaker implantation may not mean pacing need

New Permanent Pacemaker within 30 Days 18F Safety and Efficacy Study (n=126)

Physicians' decision to prophylactically implant play a big role in the variability among centers

Claret Dual Filter

The Device:

- Must be easy to use!
- The filter device should **not** be present in the aorta
- Catheter 6F (5F in development)
- 140 micron pore size
- Right radial/brachial delivery
- System will accommodate variable aortic anatomy

ΔΔ

Claret Dual Filter Device

Claret Dual Filter Device

Concept of Embrella Product Requirements

- Separate access site from main procedure; radial or brachial artery
- Fits through a 6F sheath
- Minimal orientation
- Ease of use, no new techniques
- Low profile
- One size fits all
- Deflect debris

Concept of Embrella Human Aorta

Embrella Case Example

Brachiocephalic Artery

Aortic Arch

Embrella Case Example

Embrella Device placed in outer curve of aortic arch

Embrella Case Example

Passage of balloon along the Embrella Device

